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SUMMARY

This paper presents the design and implementation of Web Polygraph, a tool
for benchmarking HTTP intermediaries. We discuss various challenges involved in
simulating Web traffic and in developing a portable, high performance tool for generating
such traffic. Polygraph’s simulation models, as well as our experiences with developing
and running the benchmark, may be useful for Web proxy developers, performance
analysts, and researchers interested in Web traffic simulation.
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1. Introduction

The market for Web caching products experienced significant growth in the past few years.
Many companies made performance claims regarding their products. However, such claims
were essentially meaningless due to the lack of widely available tools, and standard workloads.
Attempts to adopt existing origin server benchmarks (such as SPECWeb) failed due to the
specifics of proxy cache workloads. Of particular importance are a virtually infinite data set,
a very large number of interacting clients and servers, and high request rates. Furthermore,
origin server benchmarks generally focus only on throughput, and do not care about hit ratios
and object freshness, both of which are important factors for proxy cache performance.

Our group is one of the research and development teams that works on a high quality
testing tool for the Web caching community. This paper describes the result of our efforts, the
benchmark called Web Polygraph.

Web Polygraph is a versatile tool for generating Web traffic and measuring proxy
performance. The benchmark can be configured to produce a variety of realistic and unrealistic
workloads, suitable for macro- and micro-level benchmarking. Most of the traffic properties
can be changed independently from each other. For example, changes in request rate do not
necessarily affect hit ratios.
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2 A. ROUSSKOV AND D. WESSELS

We dedicate a significant amount effort to the development of industry-standard workloads.
Standard workloads, developed in cooperation with caching companies and research groups,
make product comparisons feasible and meaningful. These standard workloads are also
the recommended starting point for new Polygraph users. A novice user can configure a
sophisticated, standardized test∗ by specifying just a few key parameters such as peak request
rate and cache size. Experienced testers can fine-tune standard workload parameters or define
new workloads from scratch, usually as a result of many test trials and errors.

Development of Polygraph, and introduction of new workloads, is an interactive process. The
complexity of real-world traffic (and hence our models) drives the development of the Polygraph
software. Applying the workloads to real proxies gives essential feedback and generates desire
to add new features. This paper covers about five years of Polygraph development and
experimentation.

Web Polygraph was the benchmark of choice for several industry-wide benchmarking
events. The collection of standardized Polygraph-based results is already quite comprehensive
and continues to grow. The benchmark is routinely used by companies who market HTTP
intermediaries, and by network engineers around the world. It is important to note that political
and organizational issues related to developing and maintaining a benchmark of this scale did
affect some of our design decisions, but they are beyond the scope of this paper.

1.1. Web Polygraph’s Contribution

A good benchmark must generate traffic with realistic fundamental characteristics, such as the
distribution of file sizes and request inter-arrival times. Extracting important parameters and
patterns from various sources of real traffic constitutes a well established Web characterization
activity (see Section 5). We do not claim to have made any contribution in that area, but simply
use known characterization results in parameterizing Web Polygraph models. For example,
standard Polygraph workloads use a mix of content types (“markup,” “images,” “downloads,”
and other), with various distributions of object sizes, including heavy-tailed distributions.

This paper discusses the problems we have encountered while developing a comprehensive
performance benchmark, and describes our solutions to those problems. Our contribution is
in integrating basic isolated results, adjusting known simulation models, and making them
work in a real, high performance production environment. As we learned, integrating simple
models is often more complex than characterizing or modeling isolated traffic patterns. In fact,
direct application of existing models is often impossible due to conflicts with other models, or
incurred performance penalties.

A good benchmark must come with a collection of well designed and tested workloads as well
as a database of past results. We have started building the set of workloads to be used with
Polygraph. Designing and testing new workloads is a complex and time consuming process
that deserves a stand-alone research study. In this paper, we will discuss several workload

∗The words “test,” “run,” and “experiment” are used interchangeably in this paper.
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WEB POLYGRAPH 3

related problems and their possible solutions. We will focus on the relation between desired
workload properties and their simulation in a high performance benchmark.

2. Benchmark Architecture

This section presents a high-level overview of the major Polygraph components. Before delving
into design details, we outline the objectives that guided our work.

2.1. Design Goals

Several characteristics can be considered standard for any quality performance benchmark:
realistic workloads, repeatable experiments, meaningful and comprehensive measurements, and
reproducible results. These characteristics are well understood and create the foundation of
Polygraph’s design. The specifics of Web proxy benchmarking, and our ambition to develop
an industry standard, led to the following additional goals:

Scalability One should be able to test any single Web cache unit without changing workload
parameters, except for claimed peak request levels and/or cache capacity. Individual
caching units may support anywhere from ten to ten thousand requests per second.

Flexibility The tool must be able to produce a wide range of workloads, from low level micro-
tests to comprehensive macro-benchmarks. The tool should easily support new workloads
related to proxy caching, such as workloads for server accelerators (a.k.a., surrogates or
reverse proxies) and load-balancing L7 switches.

Portability The tool should be usable in a variety of environments, such as different operating
systems and hardware platforms.

Efficiency The tool should utilize the available hardware to the greatest extent possible.
Some benchmarking software requires excessive amounts of hardware in order to generate
sufficient load. This limits the number of users who can perform their own tests.

As we shall see, these design goals were paramount in most of our implementation decisions.

2.2. Architectural Overview

The Web Polygraph benchmark consists of virtual clients and servers glued together with an
experiment configuration file. Clients (a.k.a. robots) generate HTTP requests for simulated
objects. Polygraph uses a configurable mix of HTTP/1.0 and HTTP/1.1 protocols, optionally
encrypted with SSL or TLS. Requests may be sent directly to the servers, or through
an intermediary (proxy cache, load balancer, etc.). As Polygraph runs, measurements and
statistics are saved to log files for detailed postmortem analysis.

Polygraph generates synthetic workloads, rather than using real client or proxy traces. We
feel that use of trace-based workloads does not allow us to meet our scalability and flexibility
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4 A. ROUSSKOV AND D. WESSELS

design goals. A real trace must be treated as a constant object. Any modifications such
as scaling (i.e., intensifying request rate by playing the trace faster or by interposing trace
fragments) result in a new, synthetic trace. Since Polygraph users generally require varying
request rates, we would end up with a synthetic workload even though it is derived from a
real trace. Altering some other parameters, such as the duration of an experiment or offered
hit ratio, has the same effect.

Some may argue that a representative collection of real traces can be used to reproduce a
variety of environments without trace modification. Unfortunately, using different traces may
make most performance comparisons unfair or difficult to analyze because we end up changing
many parameters at once when switching traces. Moreover, many micro-level tests require
workloads that correspond to no real trace, and relying on trace-driven simulation makes such
testing awkward if not impossible.

The information in this paper is based on Web Polygraph version 2.7.6, except where noted
otherwise. Below we describe the major architecture components.

2.3. Robots

Polygraph robots are responsible for generating client-side Web traffic. A robot is implemented
as a logical thread within a polyclt process. Robots may be configured individually, or
collectively, and a single process can manage thousands of robots. We do not recommend
running more than one polyclt process per CPU due to context switching and other overheads.

Depending on its configuration, a robot can emulate an end-user surfing the Web with a
browser, a child cache sending requests to its parent, or a stream of aggregate Web traffic seen
on a busy network link. This versatility of a robot explains its name. Initially, robots were
called clients and then renamed to users, still causing misunderstanding and confusion. Robot
is a neutral name that does not create any strong or misleading associations.

When simulating single caches and aggregate network traffic streams, a robot must be able
to generate hundreds of HTTP requests per second and maintain thousands of concurrent
connections for hours. Such workloads put stringent efficiency requirements on the robot
implementation. As robots become smarter, the performance requirements become more
severe. Polygraph robots are implemented using non-blocking Unix socket I/O, with a
minimum per-request overhead. Creation and parsing of HTTP message headers is also
highly optimized. We stopped short of implementing HTTP message parsing code in assembly
language, a fairly common approach for high-performance caching proxies.

Realistic workloads may require simulation of tens of thousands of end-user browsers.
Distributing robots among a similar number of machines would make such simulations
prohibitively expensive. Most Polygraph users cannot afford to dedicate more than a few
PC’s for testing purposes. Consequently, a single polyclt process (machine) must be able to
support thousands of robots. While each robot in this configuration emits a very slow request
stream—far less than one request per second—robots are required to maintain a lot of state
information to emulate browser behavior (see Section 3.8). In order to support a large number
of robots per process, we must reduce the per-robot memory usage to an absolute minimum.
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WEB POLYGRAPH 5

The two scenarios above represent somewhat extreme (but common) ends of a wide spectrum
of possible workloads. These workloads require the robot implementation to be smart while
remaining very fast and memory efficient. In the following sections we show some of the
algorithms and techniques that we have used to satisfy these requirements.

2.4. Servers

Polygraph servers generate HTTP responses for Polygraph robot requests. Currently,
Polygraph supports many characteristics of Web traffic such as content types, size distributions,
object modification and expiration times, cachability, and embedded objects. The initial server
implementation was relatively simple, as compared to the code for robots. However, with the
introduction of embedded objects and increasingly realistic content simulation, the server-side
code is also becoming very complicated.

Servers are implemented as logical threads within a polysrv process. As with robots, we often
have to use many logical servers per process. For performance reasons, we recommend running
just one polysrv process per machine. Individual servers bind to specific network addresses and
ports so that running thousands of servers on a single machine is not a problem.

Compared to robots, it may seem that servers experience a lighter load. Indeed, with a
non-zero hit ratio, a proxy handles a part of the load, and many requests (hits) never reach
the servers. Occasionally, we run tests without a proxy cache, or even a workload that only
has cache misses. In these cases, the robots and servers are equally burdened.

2.5. Proxy Caches

Polygraph considers a proxy cache under test as a “black box.” This means that all necessary
measurements are made by Polygraph. Any other approach is unrealistic. There is no standard
interface by which we can probe or query the proxy cache. Even if we could, test participants
in a competitive environment could be tempted to give incorrect answers. The black box
approach means, for example, that we can not measure or report CPU and disk utilization
levels for a proxy cache under test. Users in a trusted environment can utilize vendor-specific
or third-party tools to extract and record performance data reported directly by a proxy cache.

In some cases, minimal information about proxy configuration is still required. For example,
some workloads require that the cache start out completely empty. Polygraph must fill the
cache, and then begin its measurement phase. This, obviously, requires knowledge of the disk
cache capacity.

2.6. Experiment Configuration

Setting up an experiment involves specifying a particular workload (i.e., the behavior of robots
and servers), binding robots and servers to particular processes, and configuring supplementary
activities such as logging. Most of the configuration is done using our own domain specific
language, which we call PGL. Figure 1 shows some sample PGL fragments for robot, server,
and content model configurations.
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6 A. ROUSSKOV AND D. WESSELS

Robot R = {
// servers to send requests to
origins = [ ’10.0.1-8.1-250:80’ ];

// various traffic parameters
recurrence = 55%;
embed_recur = 100%;
public_interest = 50%;
pop_model = pmZipf(0.6);
req_rate = 100/sec;
pconn_use_lmt = zipf(64);
...

};

Content cntHTML = {
size = exp(8.5KB);
cachable = 90%;
may_contain = [ cntImage ];
embedded_obj_cnt = zipf(13);

};
Server S = {

contents = [ cntImage:65%, cntHTML:15%,
cntDownload:0.5%, cntOther ];

xact_think = norm(3sec, 1.5sec);
pconn_use_lmt = zipf(16);
...

};

Figure 1. PGL code fragments. On the left, some robot configuration parameters. On the right,
parameters that define servers and the content they serve. Note that “zipf(64),” “exp(8.5KB),” and

“norm(3sec,1.5sec)” specify probability distributions for some parameters.

The robot configuration is interpreted by Polygraph when individual robots are created.
There may be many robot or server configurations present at the same time to model a variety
of environments. For example, an experiment can be configured such that 30% of servers are
fast, while the remaining 70% are slow and poorly connected. Most simulation models described
in this paper can be configured in a similar fashion.

Earlier versions of Polygraph used command line options to configure all aspects of an
experiment. We soon discovered that the complexity of workloads makes command line options
extremely messy. On the other hand, a PGL configuration is sufficiently flexible and creates
self-documenting workload files that are relatively easy to understand.

PGL was original designed to be a very simple and intuitive language. The entire PGL
configuration was declarative and could be interpreted once, at the start of a test. To our
surprise, we have received requests for such advanced programming features as pointers,
references, branching instructions, etc. In response to user requests, we also have added such
run-time features as performance watchdogs (i.e., pieces of PGL code that must be interpreted
based on current test conditions). At the time of this writing, the language is still evolving
and some advanced programming features are being introduced to satisfy user needs.

3. Simulation Details

This section gives a detailed treatment of the most interesting or innovative algorithms
and simulation models in Web Polygraph. The ideas presented here are the result of three
generations of Polygraph code and many months of simulation time. Where possible, we give
the genesis of an algorithm to illustrate possible alternatives and explain how a model achieved
its current form.
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GET http://

server location︷ ︸︸ ︷
10.11.5.1:80 /w

world-id︷ ︸︸ ︷
01bf5245.ff0353:000002 /t

type-id︷ ︸︸ ︷
0000011 /

object-id︷ ︸︸ ︷
00000104 HTTP/1.1

Accept: */*
Host: 10.11.5.1:80
X-Xact: 01bf5245.ff0353:0000004c 01bf5245.ff0353:000000b2
X-Loc-World: 01bf5245.ff0353:000002 -1/14 7

Figure 2. HTTP headers from a typical Polygraph request. The URL contains a lot of important
identifiers. A request may also include additional request headers not shown here.

Three major factors shape Polygraph’s algorithms: design goals, limitations of the
benchmarking environment, and lack of development time. It is important to analyze our
approach with the first two factors in mind. Many algorithms could be implemented differently
if we were developing a pure research tool rather than a versatile benchmark that is used both
for real industry tests and research projects.

3.1. Message Structure

Knowing the format of Polygraph’s HTTP messages, especially the URL structure, helps to
understand the domain in which all simulation models are operating. Figure 2 shows the HTTP
headers of a typical polyclt request. As you can see, the URL is filled with numbers that serve as
various identifiers. The server location part identifies the origin server for a particular request.
This part is absent when robots are talking directly to servers, although it is still present in
the Host header.

Polygraph uses the notion of a world as a collection of URLs that have something in common.
Different worlds are used to support both sharable and non-sharable Web objects. Usually, the
simulated traffic contains (r + s) worlds, where r and s correspond to the number of robots
and servers in the experiment (see Section 3.7 for details).

World-ids and many other identifiers generated by Polygraph may appear excessively long
and complex. Those long identifiers are essentially random numbers, except that they must
be unique across all robots and servers, and even across independent Polygraph runs that
occur close in time. To avoid initial synchronization and cumbersome inter-experiment state
management, Polygraph uses many external variables (time, process-id, etc.) to build unique
identifiers and minimize the chance that two of them collide.

Object type-id is an index into an object type description table built from the PGL
configuration. In this context, the type identifies a group of objects with similar properties.
Objects with the same HTTP content type (e.g., text/HTML) may actually belong to different
type groups (e.g., big HTML pages and small HTML pages).

The object identifier uniquely specifies an object within a given world. Note that Polygraph
pads object-ids with zeros to ensure that URLs do not increase in length over time. A gradual
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8 A. ROUSSKOV AND D. WESSELS

increase in HTTP header lengths could prevent an experiment from reaching a steady state,
and may cause hard-to-explain performance anomalies.† Object-ids will be discussed in detail
shortly.

Figure 2 also includes two extension fields: X-Xact and X-Loc-World . The X-Xact header
field uniquely identifies the transaction (a request-reply sequence) that generated the header.
It is especially useful for knowing whether a particular response was served as a cache hit or
as a miss (see Section 3.4). The second extension field is used for sharing global experiment
information as described in Section 3.7.

The URL format includes various tags to mark identifiers (w , t , ). These tags are used to
optimize Polygraph’s URL parsing. While Polygraph robots can use real URLs and can send
requests to real origin servers, such a setup is not typical. We use full control over Polygraph-
specific URL space to optimize the common case.

3.2. Object Identifiers and Properties

A simulated Web object has many properties or characteristics that are needed at different
stages of processing. For example, object size is needed when a server generates a response to
a request for an object. Many of these properties should remain consistent for a given object
every time it is requested. In other words, some properties must be deterministic, rather
than random. Because Polygraph must support millions of unique objects for some tests, it is
infeasible to store per-object state data “as is.”

Polygraph addresses this dilemma by deriving the object properties from an object-id. When
the value of an object property is required, Polygraph generates that value from scratch, using
the corresponding distribution or model. To avoid random value changes, Polygraph seeds the
random number generator with a value derived from an object-id. Thus, the only per-object
information that has to be remembered is the object-id itself.

Polygraph must remember which object-ids have been previously requested to simulate
page revisits and generate cache hits. Keeping a list of unique object-ids is also prohibitively
expensive. A four hour experiment with 1000 requests per second requires approximately
60 megabytes of RAM just to store the identifiers. Polygraph is often used in much longer
tests with higher request rates. To keep memory requirements reasonable, Polygraph allocates
object identifiers sequentially and remembers only the number of object-ids allocated within a
world (world size). Thus, to repeat a request for a page, Polygraph chooses a random object-
id with the value smaller than the current object-id allocation level. This object selection
algorithm is controlled by the Popularity model described in Section 3.4.2.

The sequential allocation of object-ids makes them poor seeds for random number
generators. Instead, Polygraph maps an object-id (possibly along with other tags) into a table
of pre-generated, “good” seeds to avoid the problem. The latter approach limits the number

†We observed this behavior with an old Polygraph version while running some no-proxy tests. The response
time was great for the first 99,999 requests. As soon as we hit 100,000, however, the response time increased
significantly. The reason was that FreeBSD’s TCP stack would delay packets that are slightly larger than the
size of a single mbuf, and longer URLs crossed that threshold.
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of possible random values to several millions, but the limit seems to be high enough to avoid
any significant problems.

3.3. Load Generation and Throughput

The load generation module described here is responsible for pacing the request stream. Most
Web Polygraph users start their performance analysis with the basic question: “How fast can
a proxy under test go?” Consequently, the load generation algorithm is usually the first thing
that Polygraph users learn. Of course, there is no single correct answer to this question as
maximum proxy throughput depends on many workload parameters.

Polygraph supports two basic load generation models: best-effort and constant request rate
(a.k.a., open and closed loops). Both models are configured on a per-robot basis. When the
best-effort model is used, a robot submits its next request only after receiving a response to
the previous one. The resulting request rate is determined by the proxy’s response rate and
the number of robots that are submitting requests. In our experience, there exists an optimal
number of robots that results in a peak throughput measurement. With too few robots, the
proxy is underutilized. With too many, the proxy is overloaded due to a large number of
concurrent sessions.

It is very important to note that in a best-effort scenario, the request rate and response time
are tied together: request rate is the reciprocal of response time. This tight connection between
request rate and response time is rare in real Web based systems. Best-effort workloads are
sometimes useful for low level performance analysis, but are usually inappropriate for macro-
benchmarks because they do not represent a realistic load and may lead to confusing results.
See Section 4.2 for further discussion.

The constant request rate model is based on a Poisson request stream with a given constant
mean. The name of the model is somewhat unfortunate because the Poisson stream contains
bursts and the short-term request rate may not be constant. The burstiness of the Poisson
model explains, in part, the fact that constant request rate workloads are usually harder on a
proxy than their best-effort counterparts. For example, if you use a best-effort test to determine
a peak throughput, then try to use that value for a constant request rate test, chances are
good that the test will fail.

The important characteristic of the constant request rate model is that new requests are
emitted regardless of the reply stream. Consequently, throughput and response time are not
tied together as with the best-effort model. Even if a proxy stops responding to requests, robots
continue to generate new ones until they run out of resources.

A true constant request rate (i.e., using the same delay between any two consecutive
requests) is also supported. It is best to avoid this kind of request stream during macro-
tests because it may lead to lock-step behavior due to unfortunate timing collisions (e.g.,
each request would arrive just when an expensive hardware interrupt or network event has
occurred).

Studies on Web traffic characterization suggest that real request streams have a self-similar
component visible at both micro- (milliseconds) and macro- (minutes) levels [CB96, GB97].
The Poisson stream used by the constant request rate model is not self-similar. However, the
introduction of embedded objects and browser emulation (Section 3.8) may create a necessary
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10 A. ROUSSKOV AND D. WESSELS

self-similar component. Analyzing the self-similarity of resulting Polygraph streams is our
future work.

3.3.1. Varying the Load

The constant request rate model allows us to study a proxy under steady load conditions
with constant mean request rate. While this may be useful for finding the sustained peak
performance, real proxies experience significant variation in request rates over time. For
example, one may wish to simulate the daily bell-shaped load of a typical corporate proxy.
Moreover, we usually want to gradually increase the load placed on a proxy, rather than
suddenly subjecting it to a very sudden burst.

To support customized load patterns, Polygraph introduces the notion of a simulation phase.
A phase may be of arbitrary duration, and an unlimited number of consecutive phases can
be configured and scheduled using PGL. The phase configuration contains two load factors:
load factor at the beginning of a phase (load fact beg), and the factor at the end of a phase
(load fact end). During a test, Polygraph gradually adjusts the current load factor according
to the configured beginning/end factors of the current phase and the time spent in that phase.

It turns out that a gradual adjustment of the current load factor is not trivial. Our first
implementation used the following approach. Let d be the duration of a phase, and k be the
slope of the line connecting load fact beg and load fact end. Then, naturally, the load factor
at time t is simply:‡

load fact[t] = load fact beg + t ∗ k (1)

However, using equation (1) leads to a problem much like Zeno’s “Achilles and the tortoise.”
The problem is best illustrated with a single robot configuration, and load fact beg being zero
or very small. When a robot requests load fact[t] at the beginning of a phase, the small
value of t yields small value for load fact[t]. A robot then takes an exponentially distributed
random variable (with a large mean equal to δ = 1/load fact[t]), to simulate the Poisson
request stream. The large mean leads to a long inter-arrival gap, and a lot of time passes until
the robot emits its next request at the new load fact[t + δ] level. Note that no requests are
submitted while the robot is waiting. The result is a staggered load pattern, with much lower
actual request rates than mandated by the configuration. At the extreme (but still realistic)
case, a robot may generate only one or two requests during the entire phase in which it was
meant to emit hundreds of requests.

Our current implementation eliminates the problem. The load factor is calculated as a
function of the number of requests (n), instead of time:

load fact[0] = load fact beg (2)
load fact[n + 1] = load fact[n] + δ[n] ∗ k (3)
load fact[n + 1] = 1/δ[n] (4)

‡For simplicity, the formulas talk about load factors rather than actual request rates. The calculations for
request rates are very similar.
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Figure 3. Load fluctuation on a corporate proxy.

Equation (4) is based on the fact that a robot submits exactly one request within inter-arrival
time δ. It provides an alternative way to compute load fact via δ. The three equations (2–
4) have three unknowns (load fact[n], load fact[n + 1], and δ[n]) and can be solved to find
load fact[n + 1]. The resulting algorithm changes the load level smoothly from load fact beg
to load fact end.

The current load factor is used by Polygraph robots to calculate their request rate. The
constant request rate model specifies a mean request rate (i.e., mean inter-arrival time) for
a Poisson stream. A robot multiplies that mean by the current load factor to get the correct
current mean. The adjusted mean is used to configure a random distribution that simulates
the request inter-arrival time. This process is repeated for every request. Note that robots may
be configured with different request rates, but they all share the same phase load factor.

Load factors may be used to produce workloads of almost any shape. Figure 3 depicts an
approximation to the load pattern experienced by a typical corporate proxy.

In many environments, changes in proxy load are caused by changes in the size of robot
population, rather than individual robot activity. For example, in a corporate environment,
the load increases as more employees come to work and start surfing. The request submission
rate from a single employee may not change much. To simulate the changes in robot population,
Polygraph phases have a pair of population factor beg and population factor end fields that
work exactly like load factors, but are applied to the number of active robots instead. To honor
population factor settings, Polygraph adds or deletes robots participating in the test.

3.4. Hits, Misses, and Hit Ratios

Web caches add hit ratio measurements to the traditional metrics (throughput and response
time). Hits may occur when a robot revisits an object. It is important to understand that
revisited URLs do not always result in cache hits. Here are some of the situations when
revisiting an object does not result in a hit:

• the object may be uncachable,
• an object has been modified since the last visit so a fresh copy of the object must be

served to a robot,
• after the last visit, an object got purged from proxy’s cache to free room for other objects.
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12 A. ROUSSKOV AND D. WESSELS

Polygraph should never receive a hit on an uncachable object. Such an occurrence means that
the proxy under test is not following the HTTP protocol. Polygraph counts hits on uncachable
objects as errors. In some cases, HTTP does allow proxy caches to return stale responses as
cache hits. Polygraph also reports stale responses as errors.

Both disk storage capacity and replacement policies may vary among products. In some
situations, two proxies may achieve a different hit ratio for the same workload. To compensate
for this, we introduce the notion of an ideal hit (or ideal hit ratio) and measured hit (or
measured hit ratio). The ideal hit ratio corresponds to the behavior of an ideal proxy, with an
infinite cache size, that stores all cachable responses. The measured hit ratio is the value that
Polygraph measures for a real proxy cache. The ideal hit ratio is a convenient metric because it
does not depend on the actual proxy in use. It also provides an upper bound for the measured
hit ratio.

Polygraph uses its transaction identifiers to detect cache hits. When making a request, a
robot inserts a unique transaction-id into the HTTP headers. If the request reaches a Polygraph
server, the identifier is read and its mutant version is sent back in the response headers. When
the robot receives a reply, it checks whether the transaction identifier is a mutant version of
the current transaction-id. If so, it means the server was contacted during the transaction,
and a miss is counted. If the received value is a mutant of some other transaction, then the
robot received a hit. Transaction-ids are generated and mutated in such a way that there is
a one-to-one mapping between mutants and original values. In other words, conflicts are not
possible.

Polygraph generates request streams with a constant ideal hit ratio. However, ideal hit ratio
is a derivative of several variables such as object freshness, cachability, and URL popularity. To
allow fine-grained control, a robot is configured using what we call the recurrence ratio, which
is the probability of re-visiting a particular object. With 100% cachable and fresh content,
the recurrence ratio is equal to the ideal hit ratio. In practice, the recurrence ratio must be
increased to account for uncachable or stale content, so the desired ideal hit ratio is offered.

3.4.1. Working Set

We define the working set as the set of all objects that have a non-zero probability of being
accessed at a given time. To simulate cachable misses, Polygraph introduces new cachable
objects into the working set (a so-called fill stream). If all previously introduced objects may
be revisited, then the working set size will grow during an experiment. When the working
set size increases, it means the probability of revisiting any particular object in the future
decreases. Thus, the object popularity distribution may change over time.

A changing object popularity distribution violates one of the basic requirements for a good
workload—that the workload must have a sufficiently long steady state, during which the
global properties of the objects must not change. Individual objects may come and go, but
distributions and other working set characteristics must remain constant.

To avoid problems associated with the growing working set, we artificially limit the working
set size. Size limits do not imply that working set contents remains constant. New objects are
simply added at the same rate that old objects are removed. Technically, enforcing the limit is
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Cache Size Measured Hit
(% of WSS) Ratio (%)

2.0 1.3
2.5 1.7
5.0 3.4

10.0 6.7
20.0 13.3
50.0 31.1

100.0 51.0
130.0 55.0

Table I. Measured hit ratio versus relative cache size for a simulated LRU cache and 55% ideal hit
ratio workload. An LRU cache must be larger than the working set size because some objects get

requested just before leaving the working set, yet they stay in the cache for a longer time.

easy: we instruct Polygraph to stop requesting objects that were introduced into the working
set some time ago. The hard part is selecting the appropriate size limit.

A natural working set size can be derived from proxy trace files. Unfortunately, we cannot use
this approach because of the limitations of the benchmarking environment. A natural working
set size would be at least 3–5 days worth of traffic. Most benchmarking activities cannot allow
for tests of that duration. Thus, we are forced to use a relatively small working set size of
at most 3–4 hours of peak traffic. The consequences of small working sets are discussed in
Section 4.3.

For a proxy to achieve the ideal hit ratio during a test, it must be able to cache the entire
working set. In practice, a proxy that implements an LRU-driven replacement policy must
keep slightly more objects. This is because some objects are requested just before they are
dropped from the working set. Such an object remains in an LRU cache for quite some time,
even though it will never be requested again. Table I illustrates the relationship between LRU
cache size and ideal hit ratio.

3.4.2. Object Popularity

To simulate a given recurrence ratio, a robot just needs to revisit any object from the working
set. The algorithm that selects the object to be revisited defines object popularity . In the case
of a uniform popularity model, all objects within the working set have equal chances of being
revisited. A more realistic approach is to use Zipf-like distributions, which makes some objects
more popular than others [BCF+99]. Polygraph implements both approaches. We discuss the
controversy connected to using Zipf distributions in Section 4.4.

A skewed popularity distribution such as Zipf should be adjusted so that recently accessed
documents have higher probability of being revisited. Polygraph achieves this effect by making
popularity distributions relative to the last object added to the working set, allowing the
distribution to “slide” along as new objects are being added.
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14 A. ROUSSKOV AND D. WESSELS

Polygraph also simulates “hot subsets” — a configurable proportion of requests target a
configurable portion of the working set. For example, 10% of all requests in a standard
PolyMix workload access 1% of the working set. The hot subset jumps from time to time,
simulating changing interest behavior known as “flash crowds.” With the exception of hot
subsets, simulating reference locality is not supported by Polygraph. Efficiently supporting
reference locality across URL worlds may not be possible, but introducing a locality biased
towards recently accessed objects within the same URL world is our future work.

3.4.3. On Byte Hit Ratio

So far, we have only discussed document hit ratios (DHR). Many people are also interested
in byte hit ratio (BHR) measurements. In most real caches, BHR is usually about 10–15%
lower than DHR. Thus, an important characteristic of real traffic is that there are fewer cache
hits for large files than there are for small ones. Polygraph models this phenomenon using the
bhr discrimination knob of the object popularity model.

BHR discrimination is applied after the popularity model selects a candidate object to be
re-visited. Polygraph scans object-ids around the candidate and selects the object with the
smallest size. The discrimination knob setting, a percentage, affects the probability of applying
the discrimination algorithm. Determining object size from an object-id is a computationally
expensive operation, involving generating several random variables using user-configurable
distributions. To be efficient and to approximate object popularity distributions, the algorithm
can only look at a few identifiers to make a decision. With such a small optimization space, we
have found it necessary to set BHR discrimination relatively high, around 80%, for realistic
workloads.

Note that there is no direct byte hit ratio parameter, only an indirect discrimination knob.
As with document hit ratio, supporting user-specified BHR is awkward and is often impossible.
Offered byte hit ratio depends on several user-configurable factors (e.g., response cachability,
object popularity, and size distribution). It is impossible to deterministically map a user-
specified BHR back into the right mix of those factors. The discrimination knob is one simple
way to tilt BHR in the desirable direction. BHR discrimination setting alone does not guarantee
any particular byte hit ratio. Its effect (in combination with other factors of a given workload)
can be determined experimentally.

The discrimination algorithm described above is a result of several trials and errors. More
complex algorithms were either too slow or required too many configuration parameters
without clear physical meaning. The current algorithm is a good example of how difficult it is
to efficiently combine two relatively simple but mutually dependent models (object popularity
and size in this case).

3.5. Delays and Response Time

Adding artificial delays to the workload is essential for maintaining a realistic number of
concurrent connections. High request rates alone may not result in high levels of concurrency
if each request can be processed very fast. In real caches, various external delays in request
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processing are unavoidable and the number of concurrent connection usually increases with
the request rate, presenting significant challenges to a proxy.

Polygraph simulates server-side latencies by delaying the reply using a given think time
distribution. Once the server accepts a connection and reads the request, the reply is delayed
by the think time amount. Once the think time has expired, the reply is written to the network
as quickly as possible. Note that cache hits are not delayed in this manner. Thus, a cache’s hit
ratio is also reflected in its measured response time.

A more accurate delay model requires delaying individual TCP packets at the network level
(for both client- and server-sides of the benchmark). Implementing such features in Polygraph,
at the application layer, would be extremely awkward. Instead, we use third party kernel-level
packet loss and delay simulation tools such as FreeBSD’s dummynet [Riz97]. These kernel-level
tools are usually specific to the operating system used. OS-independent hardware simulators
are also available.

3.6. Object Life Cycle Model

Caching proxies may spend a significant amount of resources on validating the freshness of
stored objects. For example, 10–20% of traffic through caches in the NLANR/IRCache Mesh
is related to freshness validation [Wes03]. Thus, a realistic benchmark must model various
freshness parameters. Polygraph handles freshness related characteristics using an Object Life
Cycle (OLC) model described in this section.

The Object Life Cycle model is responsible for simulating object modification, expiration,
and similar events in the “life” of a Web object. The model affects the outcome of validation
(If-Modified-Since) requests and various prefetching or validation algorithms that depend on
object freshness. The OLC model has three components:

• object creation time simulator
• object modification time simulator
• object expiration time simulator

Polygraph assumes that Web objects have a semi-periodic life cycle. For example, a daily
news page may be modified every 24 hours, a personal home page may be stable for a month or
so, and a page with old rock group lyrics might remain constant for years. Let’s define a cycle
as a time interval that contains exactly one modification of an object. Then a cycle period is
defined as an average cycle length (Figure 4). The period of a cycle is object specific and can
be configured using PGL on an object type basis.

While relying on a semi-periodic life cycle is certainly a limitation of the model, it may
be the only way Polygraph servers can calculate past and future modification and expiration
times. These calculations are already complicated by modification time variability (described
below), and non-cycle-based models are likely to make them prohibitively expensive.

Standard Polygraph workloads use relatively simple OLC settings. Mean cycle lengths vary
from one day to half a year, depending on the object category (e.g., HTML objects are modified
more often than large downloads). Smaller cycles lead to more objects expiring in the cache
during a test, increasing load on the caching proxy. Higher modification variability would make
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modification time

66% 100% variability

drift
possible

cycle 33%

Figure 4. Polygraph’s Object Life Cycle model. Exactly one modification occurs in every cycle. The
exact modification time varies from cycle-to-cycle based on a user-defined distribution.

automated modification prediction more difficult (we are not aware of any cache using such
predictions during a production test).

3.6.1. Object Creation Time

Every Web object is assumed to be created some time in the past. Originally, the birthday of
an object was determined using a user-specified random distribution, and both absolute and
relative (to the server process start) birthdays were supported. However, when it was necessary
to add support for validation requests on the client-side, it became apparent that supporting
relative birthdays was awkward because each Polygraph server process had different start times
and those start times would have to be known to robots (or a global reference point would
have to be negotiated run-time).

Current versions of Polygraph generate birthdays within the “first” object life cycle, using
a uniform distribution. The first cycle is the one that starts at “system time zero” (usually
January 1, 1970). While less flexible, The current model is simple and satisfies all current
testing needs.

3.6.2. Object Modification Time

Polygraph assumes that the modification pattern of a given object is usually stable and often
independent from other objects. Clearly, for many objects, modifications do not happen at
constant intervals. Polygraph models variability in object modification times while keeping
the cycle period constant. The variability is expressed in percents of a cycle period. Zero
percent means no variability; all modifications happen exactly at the middle of a cycle. One
hundred percent variability means that, for a given cycle, an object may be modified at any
time (from the beginning until the end of a cycle). Variability higher than 100% may be used
to simulate a problem at the server; modification events for an object could appear in the
wrong order or in the future (from a robot’s point of view).

Every object has a last modification time that is known to Polygraph. However, real
Web servers sometimes do not include the Last-Modified entity-header field in replies. The
OLC model allows us to specify the percentage of objects that announce their modification
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times. This property remains consistent between multiple requests of the same object.
Note that HTTP/1.1 [FGM+99] recommends that responses without a cache validator
(modification time) or explicit expiration time should not be cached. If a product follows that
recommendation during a Polygraph test, it would not achieve the ideal hit ratio. However,
none of the products tested so far appears to follow protocol recommendations by default.

Web Polygraph does not support entity tags yet. Thus, validations based on object’s last
modification time are the only ones possible. These kinds of validations are also the most
common in real life.

3.6.3. Object Expiration Time

An object’s expiration time is reported via the Expires entity-header field and, according to
HTTP, indicates the time when a cached object should no longer be considered fresh without a
revalidation. Since Polygraph knows the future modification times of objects, it would be very
easy to report precise expiration times, thus eliminating the guesswork for proxies. However,
having such an algorithm would lead to unrealistic simulations. Indeed, real Web servers cannot
predict future modification times. Hence, in most cases, servers lie about the expiration time
of objects.

A real origin server generates Expires fields based on several configuration parameters.
Usually, there is a way to tell a server to compute the expiration value according to one of the
following two formulas [Apa]:

last modification time + constant delta

current time + constant delta

Using the formulas above, one can request that an object expires delta seconds after it was
last accessed or modified. The first formula expires all cached copies of a given object at the
same absolute time. The second formula expires cached copies when they reach a given age
(after the last revalidation). The Polygraph server implements both formulas, and also allows
us to specify the portion of objects without any Expires fields.

3.6.4. Object Death Time

From the Object Life Cycle model point of view, Polygraph objects never die or disappear. The
model can provide creation, last modification, and expiration dates for any Polygraph object.
The Working Set Size model (Section 3.4.1) is responsible for introducing and removing objects
from the test working set. Adding an explicit object lifetime knob may be useful to simulate
realistic 404 (Not Found) responses.

3.6.5. Validation Requests

The Polygraph robot can be configured to generate validation (If-Modified-Since) requests,
and the Polygraph server correctly responds to such requests (originating from a robot or a
proxy). Polygraph always answers validation requests accurately. That is, it never lies about
whether an object has actually been modified or not. Note that this rule includes objects for

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 1:1–10
Prepared using speauth.cls



18 A. ROUSSKOV AND D. WESSELS

which the Last-modified reply header was omitted. Furthermore, an object’s expiration time,
if any, is irrelevant for responding to validation requests.

3.7. Global URL Space

In an early version of Polygraph, a polyclt process would emit requests destined for only one
polysrv process. When multiple servers were used, the workload was effectively composed of
multiple non-overlapping request streams. This serious limitation had to be removed. However,
sharing requests streams and maintaining a single global URL space between multiple processes
on multiple machines is a hard task.

The first challenge we had to address was how to distribute the information about the global
URL space among robots and servers. In real life, and in many benchmarking environments,
the network architecture prevents robots from communicating with each other. Just like in
real life, individual robots can be placed on different networks isolated by firewalls or other
routing restrictions. It would be unnatural to require global connectivity among robots (using
HTTP or some other protocol). In the current version, all robots can request objects from all
servers, which provides a mechanism for information sharing and synchronization.

3.7.1. Information Sharing, Second Generation

What kind of information must be shared among robots? To generate overlapping request
streams and keep the ideal hit ratio constant, a robot needs to know which objects the other
robots have requested. To provide this information, each Polygraph server remembers the
highest object-id (MaxOids) that any robot has requested. In other words, it is guaranteed
that all object-ids equal to, or smaller than MaxOids have been requested by at least one
robot. A server’s MaxOids value is sent with every response using an extension-header field.
Robots collect these counters and update their tables.

The scheme outlined above allows robots to request a URL that was visited before, possibly
generating a hit. However, knowing server’s MaxOids still does not allow robots to reliably
request an object that no other robot has requested before! Indeed, if two robots start
requesting what both believe to be a new object, one of them will inevitably end up requesting
an old object and possibly even generating a hit. Such collisions would make reliable support
of a given recurrence ratio impossible.

To avoid conflicts, earlier versions of Polygraph used the following object-id reservation
scheme: Servers reserve new object-ids for robots (Figure 5). A MaxOids counter described
above is still maintained, but each robot also keeps a set of new (reserved) object-ids received
from a server and uses only those ids to request new objects (i.e., generate cache misses).
To reduce communication costs, servers give out new object-ids in chunks. Figure 5 shows a
snapshot of the object-id allocation process with three robots and five object-ids per chunk.

Note that to preserve the MaxOids semantics, a server can increment MaxOids only when
the (MaxOids + 1)-th object has been requested by a robot. However, reserved object-ids can
be requested in no particular order (gray circles on Figure 5 indicate reserved, but not yet
requested object-ids). Thus, a server must remember what object-ids (larger than MaxOids)
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requested
with no gaps robot−1
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MaxOid s

Figure 5. Original allocation of object-ids

have been requested so it can increment MaxOids later without waiting for those object-ids
to be requested again.

To save memory, a server maintains a bitmap of reserved object-ids. The bitmap has a fixed
size. Consequently, if some polyclt process slows down (relative to its peers) and does not
request reserved object-ids fast enough, a server will have to eventually give up on waiting for
that process to request reserved oids and will re-assign them to another polyclt .

3.7.2. Information Sharing, Third Generation

The object-id reservation scheme works well for correctly configured tests, with typical request
patterns. However, it lacks robustness when there is no or little (compared to other servers)
communication between a polyclt process and a given server. In that case, reserved object-ids
are not requested fast enough, and the server has to cancel reservations to move on and satisfy
the needs of those polyclt processes that are faster, or that can communicate with the server.
While the problems were mostly found in misconfigured experiments, users were frustrated that
the test “does not just work” and generates strange errors about client-server communication,
especially when the test reaches peak load levels. It’s not just that the user sees strange errors,
but that these transactions are counted as errors in the analysis of test results.

Our solution was to re-implement the information sharing algorithm. Instead of using one
URL world per server and, relying on object-id reservations to avoid miss conflicts, the
current code maintains one URL world per polyclt-server pair.§ The server is still the point
of synchronization and exchange of object-ids. Each polyclt process tells the server how far,
in its world, it has advanced (MaxOidsr). That information is propagated to all other polyclt
processes. If a particular polyclt becomes slow or disconnected, other polyclts simply stop
receiving new information about the troubled process, but are able to generate fresh hits using
MaxOidsr of their own and those from other processes.

This third-generation algorithm is more robust, with a slight increase in memory usage.
Whereas the previous version used a constant amount of memory, this one uses an amount

§That is, per polyclt process and server agent pair.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 1:1–10
Prepared using speauth.cls



20 A. ROUSSKOV AND D. WESSELS

of memory in proportion to the number of polyclt processes. We estimate the memory
requirements for this aspect of Polygraph to be about 32Kbytes per polyclt . Given that even
most high-end caching products require less than 10 polyclt processes, the overall increase is
not very significant.

3.7.3. Private Robot Interests

In real life, a Web surfer may have interests that are specific to her alone and do not overlap
with other members of the same surfing community. Polygraph models this phenomenon by
simulating private, robot-specific, worlds. Note that URLs in a private world may be revisited
and generate hits. A private world is like a Web site that is known only to one surfer (robot).

All robots share public worlds, with one public world per logical server, and each robot has
its own private world. The worlds are distinguished by their world identifiers (see Section 3.1)
so that URLs from different worlds do not collide. The distribution of public versus private
interest is configured using PGL on a per-robot basis.

The mixture of public and private worlds may be causing some undesirable side-effects. In
recent test results, we often see a gradual decrease in measured hit ratio over time. For example,
from 58% at the start of a test, down to 55% at the end. After analyzing the access log files
from a proxy under test, we realized that the URLs from private worlds are significantly less
popular than those from public worlds. This is mostly due to the fact that private worlds are
private (each belongs to just one robot), and that individual robots have a very low request
rate.

This means that cache hits in private worlds occur much less often than hits in public worlds.
Assuming that a proxy under test uses basic LRU replacement, it may remove some of these
infrequently requested URLs from private worlds, thereby decreasing the measured hit ratio.
In fact, Polygraph does not place any restrictions on the amount of time that may pass, or
total number of requests that may occur, between repeat accesses within a single world. Due
to the probabilistic nature of our simulations, it’s possible that relatively large amounts of
time (or number of other requests) pass between repeated access in some robot worlds.

3.8. Browser Emulation

Web browsers have certain characteristics that we want to model in Polygraph. Currently,
Polygraph has two major models related to browser emulation. The first model is responsible
for managing the allocation and usage of TCP connections from a client to a proxy or
server. Polygraph supports persistent HTTP connections as defined in the HTTP RFCs. The
model follows Netscape’s browser behavior as reverse-engineered by Zhe Wang [WC98]. A
robot maintains a fixed-size connection pool (e.g., Netscape appears to be using at most 15
connections) and closes idle connections as necessary. Note that maintaining the per-robot
pool not only requires extra memory, but significantly increases the number of file descriptors
and other network resources tied to a robot, even if most of the connections in the pool are
idle.

Polygraph also simulates the effect of embedded objects on browser behavior (and hence on
the generated request stream). Servers may be configured to use content models that include
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embedded objects (see Figure 1 for a simple example). When a server generates a container
object, it inserts some Polygraph-specific tags that identify the embedded objects that belong
to the container. A robot parses the content of an object and extracts the tags. As tags get
extracted, the robot may emit corresponding requests for the embedded objects. Real browsers
may not request all of the objects embedded in a container (e.g., some objects may be already
in a browser cache). Polygraph robots can be configured to simulate a small browser cache
and/or just request embedded objects with a certain probability. A serious limitation of the
current model is that embedded objects cannot be shared among containers.

4. Benchmarking Pitfalls

In this section, we describe a few of the interesting problems and insights we have discovered
while benchmarking Web caches.

4.1. Half/Full Duplex

Almost all of our tests have involved 100BaseTX networks, and we have seen duplex
mismatches cause confusion on numerous occasions. A fast Ethernet interface may be in either
full- or half-duplex mode. The hardware is supposed to be able to auto-negotiate the speed
and duplex settings. However, in our experience, auto-negotiation often fails. Only Ethernet
switches (or a crossover connection) can support the full-duplex mode. Repeaters must use
half-duplex.

Duplex problems often go undetected initially because the network works fine for applications
like telnet and ping . When one interface is set to half-duplex on an otherwise full-duplex
segment, some collisions do occur. These collisions are not a problem at low utilization because
the interface will simply retransmit them. Problems begin to appear only when the network is
heavily used.

For these reasons, it is critical to run TCP throughput tests with all devices connected to
the network. Freely available software such as ttcp¶ and netperf ‖ can easily find the maximum
network throughput. A switched network should be able to achieve between 92 and 94 megabits
per second. However, your system’s ability to fully saturate a 100BaseTX network may also
depend on other factors, such as the CPU, bus speed, and network driver. In the past, we found
that FreeBSD’s xl0 driver performed much worse (84 Mb/s) than the fxp0 driver (94 Mb/s).
If the throughput is lower, the network interface probably reports a high number of errors or
collisions. Throughput for a half-duplex, repeated network will be much lower of course. If
using a full-duplex, switched network, it is a good idea to test the network in both directions
at the same time. For example, by running two netperf tests at the same time — one in each
direction. A unidirectional test may not reveal an interface with a half-duplex setting.

¶http://ftp.arl.mil/ftp/pub/ttcp/
‖http://www.netperf.org/
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4.2. Best-effort Workloads

In Section 3.3 we discussed some of the differences between the best-effort and constant request
rate submission models. The best-effort workload is a tempting choice because (a) it is almost
guaranteed to succeed, and (b) it measures some kind of peak throughput with relatively little
effort. The constant request rate workload, on the other hand, will fail if the proxy cannot
keep up with the offered load. Finding the peak throughput with constant request rate is a
time-consuming, and perhaps frustrating process.

If you plan to use a best-effort workload, you must understand its subtleties. The same is
true if you are reading results derived from a best-effort test. As previously mentioned, the
peak request rate depends on the number of robots and the proxy’s response rate. Thus, you
might be surprised to get a higher throughput with 100 robots than you would with 200.

One way that a best effort test can fail is if all of the robots become “stuck.” Polygraph
does not time out idle connections. Thus, if the proxy has a bug that causes connections to
hang, some robots will stop submitting new requests. Of course, you can probably decrease
the chance that a significant number of robots become stuck by using more to begin with.

A slightly more subtle problem exists with network latencies. For example, in an
article published by Network Computing magazine [Yer99], a network-induced delay of 200
milliseconds resulted in a drastic decrease in performance of high-end proxies. Some of Network
Computing’s results were an order of magnitude lower than those measured for similar products
at the IRCache bake-off only a few months before.∗∗

4.3. Small Working-set Size

Our desire for a realistic benchmark is complicated by the need to run tests that take less
than a day to complete. This conflict creates some unfortunate side-effects that you should be
aware of.

One of the most frustrating consequences is that you need to be very careful if you want to
use Polygraph results for capacity planning. Lets say that you read a benchmarking report that
shows a product achieves 2000 requests per second. Furthermore, this product has 50 gigabytes
of disk space. Notice that a 50 gigabyte cache holds about 4,000,000 objects, with a mean size
of 13 kilobytes. Let’s assume the report shows that the cache fill rate is 25% of the request
rate, or in this case, 500 objects per second. This means that this product holds only about
2.25 hours worth of Polygraph traffic until it starts removing useful objects. This is much too
short to be useful for a real stream of 2000 req/sec. Putting this another way, if you really
need a solution that can sustain 2000 requests per second, then you need much more than
50 gigabytes of disk space.

We would prefer a workload that causes cache size (and replacement policy) to affect the
achieved hit ratio. Unfortunately, to accomplish this with some realism, we need a working set
size on the order of 3–5 days, which in turn requires tests that run for 6–10 days.

∗∗For a detailed analysis of the incident, see http://polygraph.ircache.net/Watchdog/netcomp.html
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4.4. Zipf vs. Uniform

When developing the first workload for Polygraph, we planned on using a Zipf distribution
in the popularity model. This choice was primarily based on the fact that we observe Zipf-
like†† popularity distributions in real proxy traces. Our initial tests with Zipf revealed some
undesirable side-effects, however.

The Zipf popularity distribution led to an unreasonably high memory hit ratio. That is,
too many objects could be served from a cache’s memory, rather than from its disk storage.
Essentially the workload did not do an adequate job of stressing a proxy’s disk system. A
number of vendors were concerned that competitors could achieve exceptionally good response
times by using additional memory. Some were also concerned that they would be accused of
cheating because their response times were so low.

We tried a number of ways to force Zipf to give more reasonable memory hit ratios, but
all attempts failed. Part of the problem was that we didn’t have an efficient algorithm for
implementing a Zipf-like probability distribution function. Another problem was that the test
duration was relatively short (just one hour) and did not provide enough time to build up a
reasonably large working set.

In the end, we changed the workload to use a pseudo-uniform popularity distribution. Here,
repeated objects are selected uniformly from the set of previously requested objects. The set
of objects increases with time, so its not strictly uniform. This approach gave us what we
wanted—more disk hits and fewer memory hits.

Later, we implemented an efficient algorithm for simulating a Zipf-like distribution which
allowed other researches to compare the two models [LML+01].

5. Related Work

Web characterization efforts have received a lot of research attention in the past few years. Most
basic Web traffic characteristics are well understood and can be easily modeled in isolation.
For an excellent overview of fundamental results see [Pit98].

Several sophisticated benchmarks have been developed for testing origin servers. The Surge
benchmark [BC98] concentrates on synthesizing a realistic origin server workload. Surge
attempts to mimic end-user behavior by using an on/off process to simulate idle times of
individual users. Object popularity, embedded references, and reference locality are among the
most complex models implemented in server benchmarks available today. Surge developers
were often faced with problems similar to the ones described in this paper. We have tried to
learn from the authors experience and several Polygraph models (especially its early versions)
were inspired by the ideas found in Surge.

Another interesting origin server benchmark is httperf [MJ98]. Httperf’s design principles
are similar to those of Web Polygraph—a robust, high-performance benchmark that can be

††Classic Zipf uses an exponent of 1, while Zipf-like may use any exponent between 0 and 1.
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configured to simulate a wide range of micro- and macro-level workloads. The authors give
several valuable insights on operating system tuning and how to correctly stress test an origin
server to its real limits. Httperf provides an API that allows new features to be added without
re-implementing the core functionality.

Perhaps the most well known origin server benchmark is SPECWeb [Sta], developed by the
Standard Performance Evaluation Corporation. Unfortunately, the widely used SPECWeb96
has such a small data set that it creates an unrealistically low number of concurrent connections
(see Surge versus SPEC comparison in [BC98]). When used, it mostly tests the TCP stack and
RAM cache performance, but not origin server performance as a whole. SPECWeb99 attempts
to address some of these issues. SPEC benchmarks may require significant hardware investment
to generate high volume workloads and are not free, which complicates their analysis.

Unfortunately, applying existing origin server benchmarks to proxies is not appropriate.
While some of the traffic patterns are similar for proxies and origin servers, many crucial proxy
traffic characteristics are very different or completely absent at the origin server (e.g., hit ratio
and object freshness). Most proxy benchmarking activities also require high performance origin
servers. Naturally, origin server benchmark packages do not include software to simulate or
generate origin server responses.

Proxy benchmarking also puts significant demands on the tool performance. These demands
cannot be met by existing origin server benchmarks. For example, Surge limits the number of
simulated users per machine to about 150, while Polygraph supports 5–10 times more on similar
hardware. High performance requirements sometimes stand in the way of more sophisticated
models; this paper has described a few solutions that we have implemented to balance the two.

Quite a number of tools have been developed to analyse proxy performance. A survey of
relevant benchmarks can be found in [Dav99]. Many of those tools are, however, proprietary
with little or no information available about their design and performance. Proprietary
benchmarks were developed by CacheFlow, Inktomi, NetApp, Novell, and others. Caching
vendors often tailor their tools to highlight features of their particular products. On the other
hand, some proprietary tools are simply load generators rather than benchmarks.

Publicly available benchmarks dedicated to testing proxies include the Wisconsin Proxy
Benchmark (WPB) [AC98, Cao98] and HTTP Blaster [Vöc]. Both benchmarks use simulated
clients and servers. HTTP Blaster is a trace-driven tool. Cachability of objects and adjustable
load levels are supported by appropriately tuning the trace. The Wisconsin benchmark uses a
synthetic workload and models offered hit ratio, temporal locality, and server side delays, but
the project is dormant now.

6. Conclusions and Future Work

We presented the design and implementation of Web Polygraph, a proxy performance
benchmark with many advanced features (see Table II). We discussed Polygraph’s design goals
and showed how they shaped the implementation. Web proxy traffic poses many challenges
to a benchmark, including high performance simulation of complex, realistic workloads. Our
experience with Polygraph demonstrates that many of those challenges can be addressed, but
a lot of knowledge, imagination, and skill are required to build the right models.
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Feature Description

Robot & server popu-
lations

Agents bind to interface alias addresses. Typically have 1000’s of agents
per CPU.

Packet loss & delays Use operating system tools (i.e., FreeBSD’s Dummynet) for fine-grained
packet manipulation, as well as think-time distributions on agents.

DNS Robot agents can query the DNS for server addresses.
IPv6 Polygraph version 2.8 release supports IPv6 addressing.
SSL/TLS Polygraph version 2.8 supports SSL/TLS encryption.
Load generation Robot agents use either best-effort, or Poisson request submission

models.
Request methods Support for GET, HEAD, PUT, and POST methods.
HTTP versions Can specify the percentage of HTTP/1.0 and 1.1 requests and responses.
Persistent connections Robots and servers may reuse HTTP connections, subject to

configurable use limits and idle timeouts.
Aborted transactions Robots and servers may be configured to abort transactions with a

certain probability.
MD5 checksums Responses may contain a Content-MD5 header, which robots use to

verify content integrity.
Usernames Robots may add Authorization or Proxy-Authorization headers.
Cache validations Robots may emulate a local browser cache and emit some percentage of

validation (If-Modified-Since) requests. Of course, a caching proxy under
test may also issue validation requests.

Content types Responses generated by servers may contain configurable Content-Type
headers and filename extensions.

File sizes Each content type has its own file size distribution. Polygraph supports
the following distribution functions: constant, uniform, exponential,
normal, lognormal, Zipf, sequential, and tabular.

Hit ratios Servers may generate a mixture of cachable and uncachable responses
to meet specified hit ratio targets.

Working set sizes The size of the working set is configurable. The contents of the working
set change over time.

Object popularities The object popularity distribution mimics web sites with broad appeal,
such as Yahoo, CNN, Microsoft, etc.

Object life cycles Polygraph objects have a life cycle, which determines when the object
content is updated. It is important for generating validation requests.

Embedded objects This configurable feature models HTML pages that contain some number
of embedded images or other content.

Hot subsets This object popularity parameter makes some objects extremely popular
for a short time, simulating flash crowds.

Table II. Summary of Polygraph features.
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We described some of the most interesting models implemented in Polygraph, and discussed
their strengths and weaknesses. Several models illustrated the trade-offs between high
performance and precise simulation. Where appropriate, we presented the genesis of the models
so that readers may learn from our mistakes.

This paper can also be viewed as a collection of efficient and often unique benchmarking
algorithms; a collection containing in-depth coverage of these techniques along with their
alternatives and interactions. We hope that Polygraph users as well as future benchmark
developers will build on this foundation, just as we used the ideas and warnings of the
benchmarks developed before Web Polygraph.

A potentially promising direction for future work is building a distributed testbed using
Polygraph robots and servers communicating via the Internet. Such a testbed may help us to
validate network delay models and also provide for an on-demand tests that require no setup
on the user side.

We are also working on extending Web Polygraph workloads to test various URL- and
content-based filtering devices, authentication services, and L7 load balancers.

Web Polygraph software, documentation, and results are freely available [RW03].
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[Vöc] . Jens-S. Vöckler. The Blast project.
http://statistics.www-cache.dfn.de/Projects/blast/.

[WC98] . Zhe Wang and Pei Cao. Persistent connection behavior of popular browsers.
http://www.cs.wisc.edu/~cao/publications.html, December 1998.

[Wes03] . Duane Wessels. A distributed testbed for national information provisioning, 2003.
http://www.ircache.net/.

[Yer99] . Gregory Yerxa. Speedy performance, rock-bottom price put Squid freeware on top. Network
Computing Magazine, May 1999.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 1:1–10
Prepared using speauth.cls


